
�0

ADAPTATION OF THE VARIABLE NEIGHBORHOOD SEARCH
HEURISTIC TO SOLVE THE VEHICLE ROUTING PROBLEM

ARIF IMRAN,1 DAN LIANE OKDINAWATI2

1Industrial Engineering Department Institut Teknologi Nasional
2Business Logistics Department Politeknik Pos Indonesia

E-mail: arifimr@yahoo.com

ABSTRACT

The vehicle routing problem is investigated by using some adaptations of the variable neighborhood search (VNS).
The initial solution was obtained by Dijkstra’s algorithm based on cost network constructed by the sweep algorithm and
the 2-opt. Our VNS algorithm use several neighborhoods which were adapted for this problem. In addition, a number of
local search methods together with a diversification procedure were used. The algorithm was then tested on the data sets
from the literature and it produced competitive results if compared to the solutions published.

Key words: metaheuristic, routing, variable neighborhood

INTRODUCTION

The Vehicle Routing Problem (VRP) has an
important role in distribution management and
it is one of the most widely studied problems in
combinatorial optimization. The VRP is a problem
where a number of customers need to be served by
a number of homogeneous vehicles based at a single
depot. In this problem, each customer is visited
exactly once; the maximum capacity of the vehicle
and the maximum length of the route must not be
exceeded. The objective here is to find a set of routes
which fulfil all requirements mentioned above
with the least cost. There are two types of methods
used to solve the VRP, namely exact methods and
heuristic methods. For small instances (say n<30),
the VRP could be solved in a reasonable computing
time by using exact methods such as Integer Linear
Programming. However, these methods become
ineffective for large problems as the computation
becomes too time consuming. The increase in
computing time is due to the fact that the VRP is an
NP-hard problem (Lenstra and Rinnooy Kan, 1975).
In other words, it is unlikely that a polynomial time
algorithm can be found for such a problem.

There are many papers addressing the VRP. The
following are some VRP paper that we divide into
two categories, exact and heuristic methods. Exact
Methods, exact methods for solving the VRP were
developed starting from the late 1950s by Dantzig
and Ramser (1959) and Garvin et al.(1975). Dantzig
and Ramser (1959) modified the algorithm, originally
proposed for the TSP by Dantzig et al. (1954) to
address the VRP. Eilon et al. (1971) developed a

Dynamic Programming approach to address the VRP.
Laporte and Norbert (1987) and Laporte et al. (1992)
proposed a Branch and Bound approach. Heuristic
Methods, the saving algorithm was proposed by Clarke
and Wright (1964). It then became a basis of many
algorithms developed to solve the VRP. Christofides
and Eilon (1969) proposed an improvement method
for the VRP which uses the 2-opt and the 3-opt
initially developed by Lin (1965) to solve the TSP.
Salhi and Rand (1987) developed a heuristic that
considers several refinement procedures including
the perturb procedure which consider three routes
simultaneously to improve the initial solution. Osman
(1993) applied Simulated Annealing and Tabu Search
metaheuristics with his l- interchange method.

Taillard (1993) proposed a procedure that
partitioned large problems into several sub-problems
before applying Tabu Search. Xu and Kelly (1996)
introduced a heuristic search using a network flow-
based Tabu Search. Neural Network algorithm was
also put forward and this was carried out by Torki
et al. (1997). A variant of the threshold accepting
algorithm called Backtracking Adaptive Threshold
Accepting algorithm (BATA) was developed by
Tarantilis et al. (2002). Prins (2004) developed a
method based on Genetic Algorithm (GA). Pisinger
and Ropke (2007)introduced a general heuristic
that can solve five different variants of the VRP.
An Improved Ant Colony Optimization (IACO) was
proposed by Yu et al. (2009). The remaining parts
of the paper are organized as follows. The proposed
VNS algorithm is presented in Section 2. The
explanation of its main steps is provided in Section

Imran: Adaptation of the Variable Neighborhood ��

3. The computational results are given in Section 4.
The last section summarizes our findings.

Adaptation of the Variable Neighborhood
Search

Variable Neighbourhood Search (VNS) is a
metaheuristic method first proposed by Mladenovic
(1995) and later formally formulated by Mladenovic
and Hansen (1997). This heuristic has been applied to
several NP-hard problems with excellent success. The
main reasoning of this metaheuristic is based on the
idea of a systematic change of neighborhoods within
a local search method. The basic VNS algorithm is
presented in Figure 1 and follows closely the notation
of the authors.

Initialization. Select a set of neighbourhood
structures Nk, for k = 1,..., kmax that will be used in
the search; find an initial solution x and choose a
stopping condition; Repeat the following sequence
until the stopping condition is met:
1) Set k 1
2) Repeat the following steps until k = kmax:

a) Shaking Generate a point at random from
the kth neighbourhood of x(Î Nk(x));

b) Local search Apply some local search method
with as an initial solution;

 denote with the so obtained local
optimum;

c) Move or not If the local optimum is better
than the incumbent x, move there (x"),
and continue the search with N1(k1);
otherwise, set k k+1 and go to Step 2(a).

The basic VNS algorithm

The basic VNS algorithm starts by selecting a set
of neighborhood structures Nk (k = 1,..., kmax), where
Nk is the kth

 neighborhood. Given an initial solution

x, a random point in Nk(x) is generated using a
neighborhood structure Nk and then a local search,
starting from is performed to produce . The
use of can be considered as a way of maintaining
diversification through the search. If is better than
the incumbent best solution x, then x = , and the
search returns to N1, otherwise the search explores
the next neighborhood Nk+1. This is repeated until
k = kmax. Interesting new variants of this classical
VNS are presented in Hansen and Mladenovic
(2003).

Some enhancements to the basic VNS
algorithm

In this study, the basic VNS algorithm is adapted
to solve the VRP. To our knowledge, this is the first
VNS implementation to this particular routing
problem. The basic VNS algorithm is enhanced by the
use of additional features which include adopting a
set of local search procedures including Dijkstra, and
introducing a diversification scheme. The proposed
algorithm is described in Figure 1.

An overview of the proposed algorithm

An initial solution x is first generated and it is
used as the initial global best, xbest. We have a set of
neighborhood structures Nk, (k=1,..., kmax) and a set of
refinement procedures which will be described later.
The search begins by generating a random feasible
solution from N1(x), which is taken as the temporary
solution. is then improved by the set of local searches
(refinement procedures) which are implemented
within a multi-level framework (Salhi and Sari 1997).
If the solution obtained by the multi-level approach,

, is better than the incumbent best solution x, then
x = and the search reverts back to N1. But if is
found to be worse or the same as x, we generate
from the next neighborhood say Nk(x) and apply the

Step (0) Initialization. Define a set of neighborhood structures Nk, for k = 1, ..., kmax and a set of local
 searches Rl, for l =1, ..., lmax. Set the maximum number of diversifications, NbDivMax and the
 number of diversifications, NbDiv = 0. Generate an initial solution x and set xbest = x.
Step (2) Set k 1
Step (3) Repeat the following steps until k = kmax:
 (a) Shaking. Generate a point at random from the kth neighborhood of x(Î Nk(x));
 (b) Local search: Apply a multi-level approach to find the best neighbour .
 (c) Move or not. If the local optimum is better than the incumbent x,
 set x and go to (2); otherwise set k k+1.
Step (4) Construct the cost network using the incumbent x and apply Dijkstra’s algorithm to get . If the
 new solution is better than x, set x and go to (2).
Step (5) If the solution x is better than xbest, set xbest x;
 If NbDiv > NbDivMax then stop, else set NbDiv NbDiv + 1, apply the diversification procedure
 and go to (1).

Figure 1. VNS-based VRP algorithm

�� Jurnal Teknik Industri, Vol. 12, No. 1, Februari 2011: 10–15

multi-level approach again. The process is repeated
until the search reaches Nkmax

If the solution obtained
from Step 3 is worse than the incumbent xbest, a cost
network, as described in Section 3, is constructed
based on x and then Dijkstra’s algorithm is utilized
on this cost network to generate . If is better than
x the search reverts back to N1 with x = , otherwise
a diversification procedure is introduced to produce
a new initial solution, x, and the process is repeated
starting from Step 2. The search terminates after a
maximum number of diversifications (NbDivMax) is
reached.

METHOD

The procedures used within the steps of the
algorithm are as follow.

Initial solution (Step 0)

The initial solution is obtained in three steps; (a)
construct a giant tour using the sweep algorithm of
Gillett and Miller (1974), (b) improve this tour using
the 2-opt of Lin (1965), and (c) construct the cost
network and then apply Dijkstra’s algorithm (1959) to
find the optimal solution for the shortest path based
on the corresponding cost network. This partitioning
procedure based on solving the shortest path problem
was presented by Beasley (1983) for solving the VRP
and by Golden et al. (1984) for the Heterogeneous
Fleet VRP. To avoid using the largest distance
between two successive customers in a given route,
the starting points, in the construction of the cost
network, are used as those that generate the highest
largest distances between two successive customers
(i.e. gaps) in the giant tour. The number of gaps (NG)
generated is defined as follows:

NG = Min{max(8,
NR

), ((i,i+1:gi>min(,
g+

))}
2 2

where, NR is the number of routes found by
Dijkstra’s algorithm, (i,i+1) the ordered sequence of
customers, gi the ith gap (i.e. the distance between
customer i and i+1), the average gap, and g+the
largest gap. The reasoning of using (1) is based on
the idea of linking the value of NG to the number
of routes and also to the number of gaps that relate
to the average as well as the largest gap. For each of
the NG selected gaps, say (i1,i1+1), two cost networks
are then generated starting from i1 anticlockwise
and from i1+1 clockwise. Dijkstra’s algorithm is then
applied to each of these 2 × NG cost networks.

Neighborhood Structures (Step 3a)

Six neighborhoods, which are briefly described in
this subsection, are used in this study (i.e. kmax = 6).

These include the 1-1 interchange (swap), two types
of the 2-0 shift, the 2-1 interchange, and two types of
the perturbation. The order of the neighborhoods is
as follows; the 1-1 interchange is used as N1, the 2-0
shift of type 1 as N2, the 2-1 interchange as N3, the
perturbation of type 1 as N4, the perturbation of type
2 as N5, and finally the 2-0 shift of type 2 as N6.

The 1-1 interchange (the swap procedure)

This neighborhood is aimed at generating a
feasible solution by swapping a pair of customers from
two routes. This procedure starts by taking a random
customer from a randomly chosen route and tries to
swap it systematically with other customers by taking
into consideration all other routes. This procedure is
repeated until a feasible move is found.

The 2-0 shift

In the 2-0 shift, two consecutive random
customers from a randomly chosen route are selected.
These two customers are considered together for
possible insertion in other routes in a systematic
manner. This procedure is repeated until a feasible
move is found. We name this procedure the 2-0 shift
of type 1. Another 2-0 shift, which we refer to as the
2-0 shift of type 2, is similar to the above shift except
that the two customers are allowed to be inserted into
two different routes.

The 2-1 interchange

This type of insertion attempts to shift two
consecutive random customers from a randomly
chosen route to another route selected systematically
while getting one customer from the receiver route
until a feasible move is obtained.

A new perturbation mechanism

This scheme was initially developed by Salhi and
Rand (1987) for the VRP by considering three routes
simultaneously. Here, it starts by taking a random
customer from a randomly chosen route and tries to
relocate that customer into another route without
considering capacity and time constraints in the
receiver route. A customer from the receiver route is
then shifted to the third route if both capacity and
time constraints for the second and the third route are
not violated. We refer to this as the perturbation of
type 1. An extension of such a perturbation is the one
that shifts two consecutive customers from a route.
In this procedure, instead of removing one customer
at the beginning we remove two customers. We name
this procedure as the perturbation of type 2.

Local Search (Step 3b)

Six refinement procedures are adopted to make
up our local search. The order of the refinement

Imran: Adaptation of the Variable Neighborhood ��

procedures is as follows: the 1-insertion inter-route
as the first refinement procedure R1, the 2-opt inter-
route as R2, the 2-opt intra-route as R3, the swap
intra-route as R4, 1- insertion intra-route as R5, and
finally the 2-insertion intra-route as R6.

The process starts by generating a random
feasible solution from N1, which is used as the
temporary solution. The multi-level approach then
starts by finding the best solution using R1. If
is better than , then = and the search returns
to R1, otherwise the next refinement procedure is
applied. This process is repeated until R6 cannot
produce a better solution.

The 1-insertion procedures (inter-route and
intra-route)

Two types of the 1-insertion procedures are used.
The first is the 1-insertion intra-route and the second
is the 1-insertion inter-route. In the 1-insertion intra-
route we remove a customer from its position in a
route and try to insert it elsewhere within that route
in order to have a better solution. Meanwhile, in the
1-insertion inter-route, each customer from a route
is shifted from its position and tried to be inserted
elsewhere into another route. If this shifting does not
violate any constraints and improves the solution, the
selected customer is then permanently removed.

The 2-insertion (intra-route)

The 2-insertion intra-route allows us to remove
two consecutive customers and insert them elsewhere
within a route to produce a cheaper route.

The 2-opt (inter-route and intra-route)

The 2-opt intra-route, usually refer to as the 2-
opt (Lin, 1965), is an old but a simple and an effective
improvement procedure that works by removing two
non adjacent arcs and adding two new arcs while
maintaining the tour structure. A given exchange is
accepted if the resulting total cost is lower than the
previous total cost. The exchange process is continued
until no further improvement can be found. The 2-opt
inter-route is similar to the 2-opt intra-route except
that it considers two routes where each of the two
arcs belong to a different route and reverse directions
of the corresponding affected path of each route.

The swap (intra-route)

The swap intra-route is aimed at reducing the
total cost of a route by swapping positions of a pair
of customers within the route.

Use of Dijkstra’s Algorithm as an Extra
Refinement (Step 4)

Dijkstra’s algorithm, besides being used to
generate an initial solution, is also applied as a post

optimizer. Here, the cost network is constructed
from the incumbent best solution. The aim is to see
whether the optimal solution for the shortest path
based on the corresponding cost network is different
to the current one or not. In this procedure, the two
end points of the first route of the incumbent best
solution are used as the starting points and then all
the other routes are combined to form the giant tour.
The steps of this procedure, when the first point of
the first route is used to construct a network, are
presented in Figure 3.

Step 1. Use the first node of the first route as the
 starting point.
Step 2. Connect the nearest end points of other
 routes with the last node of the first
 route. Select the route which has the
 nearest end point as the next route. If the
 nearest end point is the last point in that
 route, reverse the route order.
Step 3. Apply Step 2 to the remaining routes by
 starting from the selected route in
 Step 2.

Figure 3. Construction of the cost network

When we start from the other end point (i.e., the
last node) of the first route, the order of that route
is reversed but step 2 and step 3 of Figure 3 are
similar. This construction obviously ensures that
the current solution is feasible and hence Dijkstra’s
algorithm might discover a better one. Note that this
construction can obviously be started from the end
points of any route, not necessarily the first one.

The Diversification Procedure (Step 5)

This procedure is used when there is no further
improvement after all the local searches are
performed. The idea is to explore other regions of the
search space that may not have been visited otherwise.
The incumbent best solution is used as an input for
the diversification procedure to obtain the new initial
solution. The idea is to construct a cost network by
starting from a node which is not the first point of
any route, when following clockwise direction, and
also not the end point of any route, when following
anticlockwise direction. This will ensure that a route
from this incumbent best solution will be split, a new
cost network constructed and hence a new solution
generated. The steps of the diversification procedure
are presented in Figure 4. In this study, the number
of diversifications (ND) is set as ND = MIN (100, 2N),
where N represents the number of customers in a
given instance.

�� Jurnal Teknik Industri, Vol. 12, No. 1, Februari 2011: 10–15

RESULT

Computational Experience

The algorithm is programmed in C++ and tested
to solve VRP instances of Christofides (1979). The
results and CPU time are given in Table 1 and Table
2 respectively. Table 1 show that our algorithm
produces good results. Three solutions for instance
#1, instance #6 and instance #7 are similar to the
best known solution. The solution for instance #2
and instance #3 are close to their corresponding best
known solution. VNS produces better results when
compared to the results of Osman (1993), Barbazoglu

and Ozgur (1999), and Tarantilis et al. (2002). This
is shown by the number of best solutions obtained
and the average deviation of the 524.61solutions. In
terms of CPU time, our algorithm consumes more
CPU time than Xu and Kelly (1996), Prins (2004)
and Yu et al. (2009).

CONCLUSIONS

We have put forward an adaptation of the basic
VNS algorithm to tackle the VRP. This is enhanced by
the use of additional features which include adopting
a set of local search procedures including Dijkstra’s
algorithm and introducing a diversification scheme.
It was found that our proposed VNS heuristics yield
competitive results when compared to the best known
results found in the literature. Finally, this study
shows that a suitable implementation of VNS can be
applied successfully to solve the VRP and it can be
developed other related distribution problems such as
Multi-depot VRP. Improving the solution quality and
CPU time will be our concern in the future.

BIBLIOGRAPHY
Barbazoglu, G. and Ozgur, D. 1999. A Tabu Search for the

Vehicle Routing Problem. Computers & Operations
Research 26, 255–270.

Beasley, J. 1983. Route First – Cluster Second Methods for
Vehicle Routing. Omega 11, 403–408.

Table 1. Results for the VRP Instances

No Size
Best

Solution
Osman
(1993)

Taillard
(1993)

Xu &
Kelly
(1996)

Barbazoglu
& ozgur
(1999)

Tarantilis
et al.

(2002)

Prins
(2004)

Yu et al.
(2009)

VNS8

 1 50 524.61 524.61 524.61 524.61 524.61 524.61 524.61 524.61 524.61
 2 75 835.26 844 835.26 835.26 836.71 838.18 835.26 835.26 836.41
 3 100 826.14 838 826.14 826.14 828.72 830.69 826.14 830.00 829.44
 4 150 1028.42 1044.4 1028.42 1029.14 1043.89 1036.28 1030.46 1028.42 1037.17
 5 199 1291.45 1334.6 1291.45 1298.58 1306.16 1317.81 1296.39 1305.50 1315.59
11 120 1042.11 1043 1042.11 1042.11 1051.18 1042.11 1042.11 1042.11 1042.11
12 100 819.56 819.59 819.56 819.56 819.56 819.56 819.56 819.56 819.56

Best Solutions 1 7 5 2 2 5 5 3
Average Deviation (%) 1.065 0.000 0.089 0.571 0.530 0.083 0.222 0.465

Table 2. CPU time comparison in seconds

No Size Osman
Taillard Xu and

Kelly
Barbazoglu and

Ozgur
Tarantilis

et al.
Prins Yu et al. VNS

 1 50 114 49 30 455 122 1 2 31
 2 75 50 53 49 2401 132 46 11 97
 3 100 1543 580 72 2040 189 28 30 220
 4 150 3560 3800 150 4604 385 330 211 891
 5 199 3246 3000 273 7595 1039 1147 677 1489
11 120 1445 4600 57 4214 247 18 61 329
12 100 892 340 91 2277 65 3 31 217

Step 1. Connect all points; the last point of the
 previous route is connected to the first
 point of the next route.
Step 2. Calculate all distances between two
 consecutive points.
Step 3. Select the largest distance between two
 consecutive points which are not two
 end points of different routes, say e1,e2 as
 the starting point.
Step 4. Construct the cost network starting from
 e2 clockwise and apply the Dijkstra’s
 Algorithm.
Step 5. As in Step 4, but start from e1 counter
 clockwise.

Figure 4. The diversification procedure

Imran: Adaptation of the Variable Neighborhood ��

Christofides, N. 1976. The Vehicle Routing Problem.
Recherche Operationnelle 10, 55–70.

Christofides, N. and Eilon, S. 1969. An Algorithm for the
Vehicle Dispatching Problem. Operational Research
Quarterly 20, 309–318.

Christofides, N., Mingozzi, A. and Toth, P. 1979. The Vehicle
Routing problem. in: Combinatorial Optimization.
John Wiley & Sons.

Christofides, N., Mingozzi, A. and Toth, P. 1981. Exact
Algorithm for the Vehicle Routing Problem, based
on Spanning Tree and Shortest Path Relaxations.
Mathematical Programming 20, 255–282.

Clarke, G. and Wright, J.W. 1964. Scheduling of Vehicle
from Central Depot to a Number of Delivery Points.
Operations Research 12, 568–581.

Dantzig, G., Fulkerson, D. and Johnson, S. 1954. Solution
of Large Scale Travelling Salesman Problem.
Operations Research 2, 393–410.

Dantzig, G. and Ramser, J. 1959. The Truck Dispatching
Problem. Management Science 6, 80–91.

Dijkstra, E.W. 1959. A Note on Two Problems in Connection
with Graphs. Numerische Mathematik 1, 269–271.

Eilon, S., Watson-Gandy, C. and Christofides, N. 1971.
Distribution Management: Mathematical Modelling
& Practical Analysis. Griffin, London.

Garvin, W., Crandall, H., John, J. and Spellman, R. 1975.
Application of Linear programming in the Oil
Industry. Management Science 3, 407–430.

Gillet, B.E. and Miller, L.R. 1974. A Heuristic Algorithm for
the Vehicle Dispatch Problem. Operations Research
22, 340–344.

Golden, B., Assad, A., Levy, L. and Gheysens, E. 1984. The
Fleet Size and Mix Vehicle Routing. Computers &
Operations Research 11, 49–66.

Hansen, P. and Mladenovic, N. 2003. A Tutorial on Variable
Neighbourhood Search. Le Cahiers du GERAD
G-2003-46.

Laporte, G. and Nobert, Y. 1987. Exact Algorithm for
the Vehicle Routing Problem. Annals of Discrete
Mathematics 31, 147–184.

Laporte, G., Mercure, H. and Nobert, Y. 1992. A Branch-
and-Bound Algorithm for a Class of Asymmetrical
Vehicle Routeing Problems. Journal of Operational
Research Society 43, 469–481.

Lenstra, J.K. and Rinnooy Kan, A.H.G. 1975. Some Simple
Applications of the Travelling Salesman Problem.
Operational Research Quarterly 26, 717–734.

Lin, S. 1965. Computers Solutions of the Travelling
Salesman Problem. Bell System Technical Journal
44, 2245–2269.

Mladenovic, N. 1995. Variable Neighbourhood Algorithm- A
New Metaheuristic for Combinatorial Optimisation.
Presented at Optimisation Days, Montreal.

Mladenovic, N. and Hansen, P. 1997. Variable Neighborhood
Search. Computers & Operations Research 24,
1097–1100.

Osman, I.H. 1993. Metastrategy Simulated Annealing
and Tabu Search Algorithms for Vehicle Routing
Problem. Annals of Operations Research 41,
421–451.

Pisinger, D. and Ropke, S. 2007. A General Heuristic for
Vehicle Routing Problem. Computers & Operations
Research 34, 2403–2435.

Prins, C. 2004. A Simple and Effective Evolutionary
Algorithm for the Vehicle Routing Problem.
Computers & Operations Research 31, 1985–2002.
Boston.

Salhi, S. and Rand, G.K. 1987. Improvements to Vehicle
Routing Heuristics. Journal of the Operational
Research Society 38, 293–295.

Salhi, S. and Sari, M. 1997. A Multi-Level Composite
Heuristic for the Multi-Depot Vehicle Fleet Mix
Problem. European Journal of Operational Research
103, 95–112.

Taillard, E.D. 1993. Parallel Iterative Search Methods for
Vehicle Routing Problems. Networks 23, 661–676.

Tarantilis, C.D., Kiranoudis, C.T., and Vassiliadis, V.S.,
2002. A Backtracking Adaptive Threshold Accepting
Metaheuristic Method for the Vehicle Routing
Problem. System Analysis Modelling Simulation
42, 631–664.

Torki, A., Somhon, S. and Enkawa, T. 1997. A Competitive
Neural Network Algorithm for Solving Vehicle
Routing Problems. Computers & Industrial
Engineering 31, 473–476.

Xu, J. and Kelly, J.P. 1996. A Network Flow-Based Tabu
Search Heuristic for the Vehicle Routing Problem.
Transportation Science 30, 379–393.

Yu, B., Yang, Z. and Yao, B. 2009. An Improved Ant Colony
Optimization for Vehicle Routing Problem. European
Journal of Operational Research 196, 171–176.

